Electrochemical Oxidation of 2-Substituted 3-(N-Arylamino)-4,4,4-trifluoro-2-butenoate. An Access to 3-Substituted 2-(Trifluoromethyl)-3H-indoles

Masafumi Kobayashi, Keiji Sadamune, Hiromichi Mizukami, and Kenji Uneyama*

Department of Applied Chemistry, Faculty of Engineering, Okayama University, Okayama 700, Japan

Received October 26, 1993

Much attention has been focused on the synthesis of fluorinated indoles in view of their bioactivity.¹ Perfluoroalkylated indoles are prepared in general by direct perfluoroalkylation of the corresponding indoles with perfluoroalkanoyl peroxides² or perfluoroalkyl halides.³ The direct perfluoroalkylation, however, results in low regioselectivity and poor yields of the desired perfluoroalkylindoles. In particular, it is not easy to introduce a trifluoromethyl group to an indole skeleton. Utilization of trifluoromethylated building blocks is another approach to synthesizing (trifluoromethyl)indoles.⁴ Some 2-(trifluoromethyl)-3H-indoles can be synthesized from 2-(trifluoromethyl)quinoline.⁵

We have reported a novel synthetic method of 2-(trifluoromethyl)benzimidazoles (6) by electrochemical cyclization⁶ of N, N'-disubstituted 2,2,2-trifluoroethanimidamides (4) and Lewis acid-catalyzed cyclization⁷ of the electrochemically prepared p-benzoquinone imines 5 (Scheme 1). Therefore, the corresponding carbon analogues 2 are also expected to be cyclized to 2-(trifluoromethyl)indole derivatives. Methyl 2-substituted-3-N-aryl-4.4.4-trifluorobutenoate and its derivatives 1 would be promising precursors of the corresponding *p*-benzoquinone imine 2. Here, we describe an electrochemical oxidation of 1 to 2, and the conversion of 2 to 2-(trifluoromethyl)indoles (3) via intramolecular cyclization.

The starting compounds 1⁸ are easily prepared in good yields by the nucleophilic reaction of active methylene compounds with N-(2-substituted 4-methoxyphenyl)-2.2.2-trifluoroacetimidovl chlorides (7).⁹ Table 1 shows the results. The spectral data suggest that all compounds of type 1 favor the enamine form 1 and not the imine form 1' as shown in Scheme 2. The ¹H NMR spectrum of 1a

Table 1. Syntheses of Compounds 1 from Imidoyl Chlorides 7 and Active Methylene Compounds (R¹CH₂R²)

		•	-	• • •
entry	Y	\mathbb{R}^1	R ²	yield (%)
1	Н	CO ₂ Me	CO ₂ Me	1a (91)
2	н	COMe	$\overline{CO_2Et}$	1b (65)
3	Н	CN	CO_2Et	1c (71)
4	Н	Ph	CO_2Et	1d (85)
5	н	CN	CN	1e (94)
6	OMe	CO ₂ Me	CO_2Me	1f (90)
7	Me	CO ₂ Me	CO ₂ Me	1g (90)
8	NO_2	CO ₂ Me	CO ₂ Me	1h (92)

Scheme 2

Table 2. Electrochemical Preparation of p-Benzoquinone **Imines** 2

entry	1	conditions ^a	cell	yield (%)
1	1a	A	undivided	2a (91)
2	1b	Α	undivided	2b (26)
				9b (54)
3	1b	В	divided ^b	2b (83)
4	1c	В	divided ^b	2c (81)
5	1d	С	divided ^b	2d (52)
6	1e	D	divided ^b	2e (94)°
7	1f	Α	undivided	2f (64)
8	1g	В	divided ^b	2g (94)
9	1ĥ	E	undivided	2h (48)

^a Electrolysis conditions: A, MeCN (6 mL), saturated NaHCO₃ (2 mL); B, MeCN (5 mL), H₂O (3 mL), saturated NaHCO₃ (3 mL); C, MeCN (5 mL), saturated NaHCO₃ (3 mL), NaOMe (0.4 mmol); D, MeCN (8 mL), NaClO₄ (1.2 mmol); E, MeCN (6 mL), H₂O (2 mL), NaOEt (0.5 mmol). ^b A glass filter was used for the H-type divided cell. ^c ¹⁹F NMR yield.

shows NH signal at 13.5 ppm in CDCl₃ and the IR spectrum reveals an absorption of N-H bond in the range of 3240- 3170 cm^{-1} .

Electrolysis of 1 (0.5 mmol) was conducted in an MeCN (6 mL)-saturated NaHCO₃ aqueous (2 mL) system using a glassy carbon $(2.0 \times 1.5 \text{ cm}^2)$ anode and a platinum foil $(2.0 \times 1.5 \text{ cm}^2)$ cathode in a constant current of 5 mA/cm^2 for 2.5 F/mol at -10 °C. The electrooxidation of 1a using an undivided cell resulted in the formation of the desired p-benzoquinone imine¹⁰ 2a (91%) (Table 2). Lower current density was favorable for the preparation of 2a (83, 73, and 16% yields at 5, 20, and 50 mA/cm^2 , respectively). The reaction temperature also affected the yield and a lower temperature was better suited for

^{(1) (}a) Bentov, M.; Roffman, C. Isr. J. Chem. 1969, 7, 835. (b) Grodefridus, I. et al. Int. J. Pept. Protein Res. 1979, 14, 68. (c) Johnson, R.; Kenny, F. J. Biol. Chem. 1973, 248, 4528. (d) Pratt, E.; Ho-Chien, Biochemistry 1975, 14, 3035. (e) Browne, D.; Kenyon, G.; Hegeman, G. Biochem. Biophys. Res. Commun. 1970, 39, 13. (f) Gerig, J.; Klinkenberg, J. J. Am . Chem. Soc. 1973, 95, 8393.
 (2) Yoshida, M.; Yoshida, T.; Kobayashi, M.; Kamigata, N. J. Chem.

Soc., Perkin Trans. 1 1989, 909.

^{(3) (}a) Girard, Y.; Atkinson, J. G.; Belanger, P. C.; Fuentes, J. J.; Rokach, J.; Rooney, C. S. J. Org. Chem. 1983, 48, 3220. (b) Huang, W. Y. J. Fluorine Chem. 1992, 58, 1. (c) Chen, Y.; Li, Z. T. J. Chem. Soc., Perkin Trans. 1 1992, 1443. (d) Idem. Ibid. 1993, 645.

^{(4) (}a) Ishikawa, N. Syntheses and Utilization of Organo Fluorine Compounds; CMC: Tokyo, 1987. (b) Ueda, Y.; Watanabe, H.; Uemura,

<sup>J.; Uneyama, K. Tetrahedron Lett. 1993, in press.
(5) Kobayashi, Y.; Kumadaki, I.; Hirose, Y.; Hanzawa, Y.J. Org. Chem.</sup> 1974, 39, 1836.

⁽⁶⁾ Uneyama, K.; Kobayashi, M. J. Org. Chem., in press.
(7) Uneyama, K.; Kobayashi, M. Tetrahedron Lett., 1991, 32, 5981.
(8) Uneyama, K.; Morimoto, O.; Yamashita, F. Tetrahedron Lett. 1989, 30, 4821.

⁽⁹⁾ N-Substituted-2,2,2-trifluoroacetimidoyl chlorides are easily prepared from trifluoroacetic acid and primary amines in CCl₄-PPh₃-Ét₃N system. Tamura, K.; Mizukami, H.; Maeda, K.; Watanabe, H.; Uneyama, K. J. Org. Chem. 1993, 58, 32.

⁽¹⁰⁾ Electrochemical preparation of p-benzoquinone imines from N-substituted p-anisidine in aqueous solution was reported: (a) Leedy, D. W.; Adams, R. N. J. Am. Chem. Soc. 1970, 92, 1646. (b) Ikenoya, S Masui, S.; Ohmori, H.; Sayo, H. J. Chem Soc., Perkin Trans. 2 1974, 571.

Table 3. Cyclization of 2 to 2-(Trifluoromethyl)indoles 3

entry	2	conditions ^a	yield (%)
1	2a	Α	3a (66)
2	2b	Α	3b (8)
3	2c	Α	3c (0)
4	2d	С	3d (42)
5	2f	В	3f (63)
6	2g	Α	3g (67)

° Reaction conditions: A, neat, 150 °C; B, 0.1 equiv of CAN in MeOH, rt; C, 1.0 equiv of BF $_3$ ·Et₂O in benzene, 80 °C.

obtaining higher yields (91, 82, and 52% at -10, 0, and 40°C, respectively). The yield of 2a is proportional to the amount of water in low concentrations of water in MeCN. However, a concentration of water of more than 25 vol % decreased the yield of 2a and increased the yield of the p-aminophenol derivative 9a. The electrooxidation of 1b $(R^1 = Ac, R^2 = CO_2Et)$ in an undivided cell lowered the yield of 2b (26%) and preferentially formed the p-aminophenol derivative 9b, which may be produced by cathodic reduction of 2b. In fact, product 2b was obtained in a reasonable yield (83%) in a divided cell. Likewise. the 2-cyano (1c) and 2-phenyl (1d) compounds provided the *p*-benzoquinone imines 2c and 2d in 81 and 52% yields, respectively. Electrolysis of 1e ($R^1 = R^2 = CN$) in dry MeCN gave the desired *p*-benzoquinone imine 2e in 94% yield in contrast to the poor yield in aqueous MeCN. It is notable that no base is required for the transformation of the highly acidic compound 2e ($R^1 = R^2 = CN$), while a rather stronger base (NaOMe) is required for that of the less acidic compound 1d. The N-(2-substituted 4-methoxyphenyl) compounds 1f-h also gave the similar results. In the case of 2.4-dimethoxyphenyl compound 1f the product was the *p*-benzoquinone imine 2f and not the corresponding o-benzoquinone imine derivative. The reaction would proceed via an ECEC mechanism.¹¹ A sequential reaction of one-electron oxidation. deprotonation from an amino group, a further one-electron oxidation, addition of water, and subsequent demethoxylation would lead to the *p*-benzoquinone imines 2.

These *p*-benzoquinone imines 2 were readily transformed to 3H-indole derivatives 3 (Scheme 4). The results are listed in Table 3. The thermal cyclization of 2a (Y = H, R¹ = R² = CO₂Me) and 2g (Y = Me, R¹ = R² = CO₂Me) gave the desired indoles 3a (66%) and 3g (67%), respectively. The ¹H NMR spectrum of 3a shows only three

aromatic protons and the IR spectrum reveals an absorption of O-H bond in the range of $3256-3288 \text{ cm}^{-1}$. However, 2f (Y = OMe, R¹ = R² = CO₂Me) provided a poor yield (20%) of 3f and many inseparable byproducts were formed under the same thermal conditions. In the presence of ceric ammonium nitrate (CAN), however, 2f was transformed to 3f in 63% yield. Neither thermal nor CANcatalyzed reaction of 2-phenyl compound 2d gave 3d. But, BF₃-Et₂O catalyzed the cyclization, affording the desired 3d in 42% yield. In contrast to the case of the diesters (2a, 2f, and 2g), cyclization of the acetyl (2b) and the cyano (2c) compounds failed.

Experimental Section

The ¹H and ¹⁹F NMR were recorded in CDCl₃ on a Varian VXR-200 or 500 using TMS for ¹H and C_6F_6 for ¹⁹F as internal standards. Melting points were uncorrected.

Preparations of Compounds 1. N-(4-Methoxyphenyl)-2,2,2trifluoroacetimidoyl chloride (7a) (5 mmol) in THF (5 mL, distilled by the treatment of sodium-benzophenone) was added into a mixture of dimethyl malonate (7 mmol) and sodium hydride (7 mmol) in THF (10 mL) and the solution was stirred at rt for 4 h. The reaction mixture was extracted with ethyl acetate (5 mL \times 3) and the extracts were washed with brine. The organic layer was dried over anhydrous magnesium sulfate, condensed in vacuo, and then recrystallized from benzene-hexane solution.

Methyl 4,4,4-Trifluoro-3-[N-(4-methoxyphenyl)amino]-2-(methoxycarbonyl)-2-butenoate (1a): colorless crystals (91%); mp 70-71 °C; IR (CH₂Cl₂) 3240, 1764, 1725, 1255 cm⁻¹. Anal. Calcd for C₁₄H₁₄F₃NO₅: C, 50.46; H, 4.23; N, 4.20. Found: C, 50.56; H, 4.27; N, 4.18.

Ethyl 2-Acetyl-4,4,4-trifluoro-3-[*N*-(4-methoxyphenyl)amino]-2-butenoate (1b): colorless crystals (65%); mp 68–69 °C; IR (CH₂Cl₂) 1652, 1256 cm⁻¹. Anal. Calcd for $C_{15}H_{16}F_3NO_4$: C, 54.38; H, 4.86; N, 4.23. Found: C, 54.50; H, 4.82; N, 4.17.

Ethyl 2-Cyano-4,4,4-trifluoro-3-[*N*-(4-methoxyphenyl)amino]-2-butenoate (1c): colorless crystals (71%); mp 98-100 °C; IR (CH₂Cl₂) 3240, 2220, 1664, 1238 cm⁻¹. Anal. Calcd for $C_{14}H_{13}F_{3}N_{2}O_{3}$: C, 53.51; H, 4.17; N, 8.91. Found: C, 53.36, H, 4.03, N, 8.95.

Ethyl 4,4,4-Trifluoro-3-[N-(4-methoxyphenyl)amino]-2phenyl-2-butenoate (1d): yellow oil (85%); IR (CH₂Cl₂) 3232, 1752, 1258 cm⁻¹. Anal. Calcd for $C_{19}H_{18}F_3NO_3$: C, 62.46; H, 4.97; N, 3.83. Found: C, 62.57; H, 5.20; N, 3.46.

2-Cyano-4,4,4-trifluoro-3-[*N*-(4-methoxyphenyl)amino]-**2-butenonitrile** (1e): yellow crystals (94%): mp 142–143 °C; IR (CH₂Cl₂) 3236, 2228, 1706, 1182 cm⁻¹. Anal. Calcd for $C_{12}H_8F_3N_3O$: C, 53.94; H, 3.02; N, 15.72. Found: C, 54.17; H, 2.92; N, 15.48.

Methyl 4,4,4-Trifluoro-3-[N-(2,4-dimethoxyphenyl)amino]-2-(methoxycarbonyl)-2-butenoate (1f): colorless crystals (90%); mp 98-99 °C; IR (CH₂Cl₂) 1678, 1278 cm⁻¹. Anal. Calcd for $C_{15}H_{16}F_3NO_6$: C, 49.59; H, 4.44; N, 3.85. Found: C, 49.68; H, 4.43; N, 3.83.

Methyl 4,4,4-Trifluoro-3-[*N*-(4-methoxy-2-methylphenyl)amino]-2-(methoxycarbonyl)-2-butenoate (1g): colorless crystals (90%); mp 63-65 °C; IR (CH₂Cl₂) 3156, 1734, 1278 cm⁻¹. Anal. Calcd for $C_{15}H_{16}F_3NO_5$: C, 51.88; H, 4.64; N, 4.03. Found: C, 51.86; H, 4.60; N, 3.97.

Methyl 4,4,4-Trifluoro-3-[N-(4-methoxy-2-nitrophenyl)amino]-2-(methoxycarbonyl)-2-butenoate (1h): orange crystals (92%); mp 79-81 °C; IR (CH₂Cl₂) 3384, 2960, 1690, 1250 cm⁻¹. Anal. Calcd for C₁₄H₁₃F₃N₂O₇: C, 44.45; H, 3.46; N, 7.40. Found: C, 44.44; H, 3.43; N, 7.26.

Typical Procedure of Electrolysis. Electrochemical **Preparation** of *p*-Benzoquinone Imine 2a. The amine 1a (0.5 mmol) dissolved in a mixture of acetonitrile (6 mL) and saturated aqueous sodium hydrogen carbonate (2 mL) containing sodium perchlorate (0.4 mmol) was electrooxidized at -10 °C in an undivided cell using a glassy carbon for anode and a platinum foil for cathode in the constant current of 5 mA/cm² for 2.5 F/mol of electricity. After evaporation of most of acetonitrile in vacuo, the organic phase was extracted with ethyl acetate. The extracts

⁽¹¹⁾ Torii, S. Electroorganic Syntheses, Part I: Oxidations; Kodansha; Japan.

were washed with brine and concentrated in vacuo. The residue was chromatographed over SiO_2 to give 2a.

Methyl 4,4,4-Trifluoro-3-[N-(4-oxo-2,5-cyclohexadien-1-ylidene)amino]-2-(methoxycarbonyl)-2-butenoate (2a): red oil (91%); IR (neat) 1742, 1660, 1234 cm⁻¹. Anal. Calcd for $C_{13}H_{10}F_3NO_5$: C, 49.22; H, 3.18; N, 4.42. Found: C, 49.19; H, 3.23; N, 4.42.

Ethyl 2-Acetyl-4,4,4-trifluoro-3-[N-(4-oxo-2,5-cyclohexadien-1-ylidene)amino]-2-butenoate (2b): red oil (83%); IR (neat) 1728, 1234 cm⁻¹. Anal. Calcd for $C_{14}H_{12}F_3NO_4$: C, 53.34; H, 3.84; N, 4.44. Found: C, 53.13; H, 3.97; N, 4.53.

Ethyl 2-Cyano-4,4,4-trifluoro-3-[N-(4-oxo-2,5-cyclohexadien-1-ylidene)amino]-2-butenoate (2c): red oil (81%); IR (neat) 2228, 1728, 1660, 1234 cm⁻¹. Anal. Calcd for $C_{13}H_9$ - $F_3N_2O_3$: C, 52.36; H, 3.04, N, 9.39. Found: C, 52.13; H, 3.12; N, 9.54.

Ethyl 4,4,4-Trifluoro-3-[N-(4-oxo-2,5-cyclohexadien-1-ylidene)amino]-2-phenyl-2-butenoate (2d): red oil (52%); IR (neat) 1732, 1660, 1222 cm⁻¹. Anal. Calcd for C₁₈H₁₄F₃NO₃: C, 61.89; H, 4.04; N, 4.01. Found: C, 62.22; H, 4.43; N, 3.84.

2-Cyano-4,4,4-trifluoro-3-[*N*-(4-oxo-2,5-cyclohexadien-1-ylidene)amino]-2-butenonitrile (2e): red oil (94%); IR (neat) 2240, 1662, 1262 cm⁻¹. Anal. Calcd for $C_{11}H_4F_3N_3O$: C, 52.61; H, 1.61; N, 16.72. Found: C, 52.82; H, 1.58; N, 16.66.

Methyl 4,4,4-Trifluoro-3-[N-(2-methoxy-4-oxo-2,5-cyclohexadien-1-ylidene)amino]-2-(methoxycarbonyl)-2-butenoate (2f): red oil (64%); IR (neat) 1734, 1652, 1248 cm⁻¹. Anal. Calcd for $C_{14}H_{12}F_3NO_6$: C, 48.42; H, 3.48; N, 4.03. Found: C, 48.53; H, 3.87; N, 4.02.

Methyl 4,4,4-Trifluoro-3-[N-(2-methyl-4-oxo-2,5-cyclohexadien-1-ylidene)amino]-2-(methoxycarbonyl)-2-butenoate (2g): red oil (94%); IR (neat) 1740, 1658, 1244 cm⁻¹. Anal. Cacld for $C_{14}H_{12}F_3NO_5$: C, 50.76; H, 3.65; N, 4.23. Found: C, 50.53; H, 3.87; N, 4.02.

Methyl 4,4,4-Trifluoro-3-[*N*-(2-nitro-4-oxo-2,5-cyclohexadien-1-ylidene)amino]-2-(methoxycarbonyl)-2-butenoate (2h): red oil (48%); IR (neat) 1740, 1658, 1244 cm⁻¹. Anal. Calcd for $C_{13}H_9F_3N_2O_7$: C, 43.11; H, 2.50; N, 7.73. Found: C, 42.98; H, 2.36; N, 7.77.

2-(Trifluoromethyl)-5-hydroxy-3,3-bis(methoxycarbonyl)-3H-indole (3a). Neat 2a (0.5 mmol) was heated at 150 °C for 3 h. The crude product was purified by flash column chromatography on silica gel with hexane-AcOEt as an eluent to afford 3a: colorless crystals (66%); mp 133-135 °C; IR (CH₂- Cl₂) 3256, 1748, 1250 cm⁻¹. Anal. Calcd for $C_{13}H_{10}F_3NO_5$: C, 49.07; H, 3.18; N, 4.42. Found: C, 49.12; H, 3.12; N, 4.38.

3-Acetyl-3-(ethoxycarbonyl)-2-(trifluoromethyl)-5-hydroxy-3H-indole (3b): colorless crystals (8%); mp 175-176 °C; IR (CH₂Cl₂) 3288, 2992, 1650, 1252 cm⁻¹. Anal. Calcd for $C_{14}H_{12}F_{3}NO_{4}$: C, 53.34; H, 3.84; N, 4.44. Found: C, 53.13; H, 3.97; N, 4.53.

3-(Ethoxycarbonyl)-2-(trifluoromethyl)-5-hydroxy-3-phenyl-3H-indole (3d). A mixture of 2d (0.5 mmol) and boron trifluoride etherate (0.5 mmol) in benzene (3 mL) was stirred in the refluxing temperature under N₂ for 2 days: viscous oil (42%); IR (neat) 3388, 1740, 1252 cm⁻¹. Anal. Calcd for C₁₈H₁₄F₃NO₃: C, 61.89; H, 4.04; N, 4.01. Found: C, 62.22; H, 4.43; N, 3.84.

2-(Trifluoromethyl)-5-hydroxy-7-methoxy-3,3-bis-(methoxycarbonyl)-3H-indole (3f). A mixture of 2f (0.5 mmol) and CAN (0.05 mmol) in MeOH (3 mL) was stirred at rt under N₂ for 7 h. The reaction mixture was extracted with ethyl acetate (5 mL \times 3): colorless crystals (63%); mp 133-135 °C; IR (CH₂-Cl₂) 3628, 1744, 1284 cm⁻¹. Anal. Calcd for C₁₄H₁₂F₃NO₆: C, 48.42; H, 3.48; N, 4.03. Found: C, 48.53; H, 3.87; N, 4.02.

2-(Trifluoromethyl)-5-hydroxy-7-methyl-3,3-bis-(methoxycarbonyl)-3*H*-indole (3g): colorless crystals (63%); mp 106-107 °C; IR (CH₂Cl₂) 3272, 1746, 1268 cm⁻¹. Anal. Calcd for $C_{14}H_{12}F_3NO_5$: C, 50.76; H, 3.65; N, 4.23. Found: C, 50.44; H, 3.92; N, 4.0.

Methyl 4,4,4-Trifluoro-3-[N-(4-hydroxyphenyl)amino]-2-(methoxycarbonyl)-2-butenoate (9a): viscous oil; IR (neat) 3400, 1684, 1248 cm⁻¹. Anal. Calcd for C₁₈H₁₂F₃NO₅: C, 48.91; H, 3.79; N, 4.39. Found: C, 48.67; H, 4.13; N, 4.09.

Ethyl 2-Acetyl-4,4,4-trifluoro-3-[N-(4-hydroxyphenyl)amino]-2-butenoate (9b): viscous oil; IR (neat) 3388, 1719, 1266 cm⁻¹. Anal. Calcd for C₁₄H₁₄F₃NO₄: C, 53.06; H, 4.45; N, 4.41. Found: C, 52.64; H, 4.48; N, 4.44.

2-Cyano-4,4,4-trifluoro-3-[*N*-(4-hydroxyphenyl)amino]-2butenonitrile (9e): green crystals; mp 230–233 °C; IR (CH₂Cl₂) 3404, 2228, 1704, 1148 cm⁻¹. Anal. Calcd for C₁₁H₆F₃N₃O: C, 52.19; H, 2.39; N, 16.59. Found: C, 51.96; H, 2.51; N, 16.55.

Acknowledgment. The authors are grateful to the Ministry of Education, Culture, and Science of Japan (Nos. 04453101, 04555204, and 05235102) and Nagase Foundation for the financial support and the SC-NMR laboratory of Okayama University for ¹⁹F NMR analysis.